Саморазвитие. Отношения. Личность. Характер. Психология. Образование

1 закон кеплера формулировка. Законы движения кеплера

Два величайших ученых намного обогнавшие свое время, они создали науку, которая называется небесной механикой, то есть открыли законы движения небесных тел под действием сил тяготения, и даже если бы этим их достижения ограничились, они все равно бы вошли в пантеон великих мира сего. Так случилось, что они не пересеклись во времени. Только через тринадцать лет после смерти Кеплера родился Ньютон. Оба они являлись сторонниками гелиоцентрической системы Коперника. Много лет изучая движение Марса, Кеплер экспериментально открывает три закона движения планет, за пятьдесят с лишним лет до открытия Ньютоном закона всемирного тяготения. Еще не понимая, почему планеты движутся так, а не иначе. Это был каторжный труд и гениальное предвидение. Зато Ньютон именно законами Кеплера проверял свой закон тяготения. Все три закона Кеплера являются следствиями закона тяготения. И открыл его Ньютон в 23 года. В это время 1664 – 1667 годы в Лондоне свирепствовала чума. Тринити колледж, в котором преподавал Ньютон, был распущен на неопределенный срок, дабы не усугубить эпидемию. Ньютон возвращается к себе на родину и за два года совершает переворот в науке, сделав три важнейших открытия: дифференциальное и интегральное исчисление, объяснение природы света и закон всемирного тяготения. Исаак Ньютон был торжественно похоронен в Вестминстерском аббатстве. Над его могилой высится памятник с бюстом и эпитафией «Здесь покоится сэр Исаак Ньютон, дворянин, который почти божественным разумом первый доказал с факелом математики в руке движение планет, пути комет и приливы океанов… Пусть смертные радуются, что существует такое украшение рода человеческого».

Заслуга открытия законов движения планет принадлежит выдающемуся немецкому учёному, астроному и математику, Иоганну Кеплеру (1571 – 1630 гг.)– человеку большого мужества и необыкновенной любви к науке.

Он проявил себя ревностным сторонником системы мира Коперника и задался целью уточнить строение Солнечной системы. Тогда это означало: познать законы движения планет, или, как он выразился, «проследить замысел Бога при cотворении мира» . В начале XVII в. Кеплер, изучая обращение Марса вокруг Солнца, установил три закона движения планет.

Первый закон Кеплера: Каждая планета обращается вокруг Солнца по эллипсу, в одном из фокусов которого находится Солнце.

Под действием силы притяжения одно небесное тело движется в поле тяготения другого небесного тела по одному из конических сечений – кругу, эллипсу, параболе или гиперболе.

Эллипсом называется плоская замкнутая кривая, имеющая такое свойство, что сумма расстояний каждой её точки от двух точек, называемых фокусами, остаётся постоянной. Эта сумма расстояний равна длине большой оси эллипса. Точка О – центр эллипса, F1 и F2 – фокусы. Солнце находится в данном случае в фокусе F1.


Ближайшая к Солнцу точка орбиты называется перигелием, самая далёкая – афелием. Линия, соединяющая какую-либо точку эллипса с фокусом, называется радиус-вектором. Отношение расстояния между фокусами к большой оси (к наибольшему диаметру) называется эксцентриситетом е. эллипс тем сильнее вытянут, чем больше его эксцентриситет. Большая полуось эллипса а – среднее расстояние планеты до Солнца.

По эллиптическим орбитам движутся и кометы и астероиды. У окружности е = 0, у эллипса 0 < е < 1, у параболы е = 1, у гиперболы е > 1.

Орбиты планет – эллипсы, мало отличаются от окружностей; их эксцентриситеты малы. Например, эксцентриситет орбиты Земли е = 0,017.

Второй закон Кеплера: Радиус-вектор планеты за одинаковые промежутки времени описывает равные площади (определяет скорость движения планеты по орбите). Скорость планеты тем больше, чем она ближе к Солнцу.

Планета проходит путь от точки А до А1 и от В до В1 за одно и то же время. Другими словами, планета движется быстрее всего в перигелии, а медленнее всего – когда находится на наибольшем удалении (в афелии). Так, скорость кометы Галлея в перигелии равна 55 км/с, а в афелии 0,9 км/с.

Самый близкий к Солнцу Меркурий обегает вокруг светила за 88 дней. За ним движется Венера, и год на ней длится 225 земных суток. Земля обращается вокруг Солнца за 365 суток, то есть ровно за один год. Марсианский год почти в два раза продолжительнее земного. Юпитерский год равен почти 12 земным годам, а далёкий Сатурн обходит свою орбиту за 29,5 лет! Словом, чем дальше планета от Солнца, тем продолжительнее на планете год. И Кеплер пытался найти зависимость между размерами орбит различных планет и временем их обращения вокруг Солнца.

15 мая 1618 года после множества неудачных попыток Кеплер установил наконец очень важное соотношение, известное как

Третий закон Кеплера: Квадраты периодов обращения планет вокруг Солнца относятся как кубы их средних расстояний от Солнца.

Если периоды обращения любых двух планет, например Земли и Марса, обозначить через Тз и Тм, а их средние расстояния от Солнца – а з и а м, то третий закон Кеплера можно записать в виде равенства:

Т 2 м / Т 2 з = а 3 м / а 3 з.

Но ведь период обращения Земли вокруг Солнца равен одному году (Тз = 1), а среднее расстояние Земля – Солнце принято за одну астрономическую единицу (а з = 1 а.е.). Тогда данное равенство примет более простой вид:

Т 2 м = а 3 м

Период обращения планеты (в нашем примере Марса) можно определить из наблюдений. Он составляет 687 земных суток, или 1,881 года. Зная это, нетрудно вычислить среднее расстояние планеты от Солнца в астрономических единицах:

Т.е. Марс находится в среднем в 1,524 раза дальше от Солнца, чем наша Земля. Следовательно, если известно время обращения какой-нибудь планеты, то по нему можно найти её среднее расстояние от Солнца. Таким путём Кеплеру удалось определить расстояния всех известных в ту пору планет:

Меркурий – 0,39,

Венера – 0,72,

Земля – 1,00

Марс – 1,52,

Юпитер – 5,20,

Сатурн – 9,54.

Только это были относительные расстояния – числа, показывающие, во сколько раз та или иная планета дальше от Солнца или ближе к Солнцу, чем Земля. Истинные значения этих расстояний, выраженные в земных мерах (в км), оставались неизвестными, ибо ещё не была известна длина астрономической единицы – среднего расстояния Земли от Солнца.

Третий закон Кеплера связал в единую стройную систему всё солнечное семейство. На поиски ушло девять трудных лет. Победило упорство учёного!

Вывод: законы Кеплера теоретически развивали гелиоцентрическое учение и тем самым укрепляли позиции новой астрономии. Астрономия Коперника – самое мудрое из всех произведений человеческого ума.

Последующие наблюдения показали, что законы Кеплера применимы не только для планет Солнечной системы и их спутников, но и для звёзд, физически связанных между собой и обращающихся вокруг общего центра масс. Они легли в основу практической космонавтики, ибо по законам Кеплера движутся все искусственные небесные тела, начиная с первого советского спутника и кончая современными космическими аппаратами. Не случайно в истории астрономии Иоганна Кеплера называют «законодателем неба».

Обладал незаурядными математическими способностями. В начале XVII века в результате многолетних наблюдений за движением планет, а также на основе анализа астрономических наблюдений Тихо Браге, Кеплер открыл три закона, названных впоследствии его именем.

Первый закон Кеплера (закон элипсов). Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

Второй закон Кеплера (закон равных площадей). Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, заметает собой равные площади.

Третий закон Кеплера (гармонический закон). Квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит.

Давайте рассмотри подробнее каждый из законов.

Первый закон Кеплера (закон эллипсов)

Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.

Первый закон описывает геометрию траекторий планетарных орбит. Представьте себе сечение боковой поверхности конуса плоскостью под углом к его основанию, не проходящей через основание. Получившейся фигурой будет эллипс. Форма эллипса и степень его сходства с окружностью характеризуется отношением e = c / a, где c — расстояние от центра эллипса до его фокуса (фокальное расстояние), a — большая полуось. Величина e называется эксцентриситетом эллипса. При c = 0, и, следовательно, e = 0 эллипс превращается в окружность.

Ближайшая к Солнцу точка P траектории называется перигелием. Точка A, наиболее удалённая от Солнца, — афелием. Расстояние между афелием и перигелием составляет большую ось эллиптической ор-биты. Расстояние между афелием А и перигелием Р составляет большую ось эллиптической ор-биты. Половина длины большой оси, полуось a, — это среднее расстояние от планеты до Солнца. Среднее расстояние от Земли до Солнца называется астрономической единицей (а. е.) и равно 150 млн км.


Второй закон Кеплера (закон площадей)

Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, занимает собой равные площади.

Второй закон описывает изменение скорости движения планет вокруг Солнца. С этим законом связаны два понятия: перигелий — ближайшая к Солнцу точка орбиты, и афелий — наиболее удалённая точка орбиты. Планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии. На рисунке, площади секторов выделенных синим, равны и соответственно время, за которое планета пройдет каждый сектор, тоже равно. Земля проходит перигелий в начале января, а афелий в начале июля. Второй закон Кеплера, закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.

Третий закон Кеплера (гармонический закон)

Квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит. Справедливо не только для планет, но и для их спутников.

Третий закон Кеплера позволяет сравнить орбиты планет между собой. Чем дальше планета находится от Солнца, тем длиннее периметр ее орбиты и при движении по орбите ее полный оборот занимает больше времени. Так же с ростом расстояния от Солнца снижается линейная скорость движения планеты.

где T 1 , T 2 — периоды обращения планеты 1 и 2 вокруг Солнца; a 1 > a 2 — длины больших полуосей орбит планет 1 и 2. Полуось — это среднее расстояние от планеты до Солнца.

Познее Ньютон установил, что третий закон Кеплера не совсем точен — в действительности в него входит и масса планеты:

где М - масса Солнца, а m 1 и m 2 - масса планеты 1 и 2.

Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды. Так же зная расстояние планеты до Солнца, можно вычислить продолжительность года (время полного оборота вокруг Солнца). И наоборот, зная продолжительность года, можно вычислить расстояние планеты до Солнца.

Три закона движения планет открытые Кеплером дали точное объяснение неравномерности движения планет. Первый закон описывает геометрию траекторий планетарных орбит. Второй закон описывает изменение скорости движения планет вокруг Солнца. Третий закон Кеплера позволяет сравнить орбиты планет между собой. Законы, открытые Кеплером, послужили позже Ньютону основой для создания теории тяготения. Ньютон математически доказал, что все законы Кеплера являются следствиями закона тяготения.

Коль скоро на сайте завелись "разоблачители", утверждающие, что математика - это ересь, а гравитационного притяжения между планетами вообще не существует, давайте посмотрим, как закон всемирного тяготения позволяет описать явления, установленные эмпирическим путем. Ниже представлено математическое обоснование первого закона Кеплера.

1. Исторический экскурс

Для начала вспомним, как вообще этот закон появился на свет. В 1589 году некто Иоганн Кеплер (1571 - 1630) - выходец из бедной немецкой семьи - заканчивает школу и поступает в Тюбингенский университет. Там он занимается математикой и астрономией. Причем его учитель профессор Местлин, будучи тайным поклонником идей Коперника (гелиоцентрическая система мира), преподает в университете "правильную" теорию - систему мира Птолемея (т.е. геоцентрическую). Что, впрочем, не мешает ему познакомить своего ученика с идеями Коперника, и вскоре тот сам становится убежденным сторонником этой теории.

В 1596 году Кеплер издает свою "Космографическую тайну". Хотя работа представляет сомнительную научную ценность даже по тем временам, тем не менее она не остается незамеченной для датского астронома Тихо Браге, который вел астрономические наблюдения и вычисления уже на протяжении четверти века. Тот замечает самостоятельность мышления молодого ученого и знания им астрономии.

С 1600 года Иоганн работает помощником Браге. После его смерти в 1601 году Кеплер начинает изучать результаты трудов Тихо Браге - данные многолетних астрономических наблюдений. Дело в том, что к концу XVI века прусские таблицы (таблицы движения небесных тел, вычисленные на основе учений Коперника) стали давать существенные расхождения с наблюдаемыми данными: ошибка в положении планет доходила до 4-5 0 .

Для решения проблемы Кеплер был вынужден усложнить теорию Коперника. Он отказывается от идеи о том, что планеты движутся по круговым орбитам, что в конечном итоге позволяет ему решить проблему с расхождением теории с наблюдаемыми данными. Согласно его выводам, планеты движутся по орбитам, имеющим форму эллипса, причем Солнце находится в одном из его фокусов. Так что расстояние между планетой и Солнцем периодически меняется. Этот вывод известен как первый закон Кеплера .

2. Математическое обоснование

Посмотрим теперь, как первый закон Кеплера согласуется с законом всемирного тяготения. Для этого выведем закон движения тела в гравитационном поле, обладающем сферической симметрией. В этом случае выполняется закон сохранения момента импульса тела $\vec{L}=[\vec{r},\vec{p}]$. Это значит, что тело будет двигаться в плоскости, перпендикулярной вектору $\vec{L}$, причем ориентация этой плоскости в пространстве неизменна. В таком случае удобно использовать полярную систему координат $(r, \phi)$ с началом в источнике гравитационного поля (т.е. вектор $\vec{r}$ перпендикулярен вектору $\vec{L}$). Т.е. одно из тел (Солнце) мы помещаем в начало координат, и ниже выведем закон движения второго тела (планеты) в этом случае.

Нормальная и тангенциальная составляющие вектора скорости второго тела в выбранной системе координат выражаются следующими соотношениями (здесь и далее точка означает производную по времени):

$$ V_{r}=\dot{r}; V_{n}=r\dot{\phi} $$

Закон сохранения энергии и момента импульса в этом случае имеют следующий вид:

$$E = \frac{m\dot{r}^2}{2}+\frac{m(r\dot{\phi})^2}{2}-\frac{GMm}{r}=const \hspace{3cm}(2.1)$$ $$L = mr^2\dot{\phi}=const \hspace{3cm}(2.2)$$

Здесь $G$ - гравитационная постоянная, $M$ - масса центрального тела, $m$ - масса "спутника", $E$ - полная механическая энергия "спутника", $L$ - величина его момента импульса.

Выражая $\dot{\phi}$ из (2.2) и подставляя его в (2.1), получаем:

$$ E = \frac{m\dot{r}^2}{2}+\frac{L^2}{2mr^2}-\frac{GMm}{r} \hspace{3cm}(2.3) $$

Перепишем полученное соотношение следующим образом:

$$ dt=\frac{dr}{\sqrt{\frac{2}{m}(E-\frac{L^2}{2mr^2}+\frac{GMm}{r})}} \hspace{3cm}(2.4)$$

Из соотношения (2.2) следует:

$$ d\phi=\frac{L}{mr^2}dt $$

Подставляя вместо $dt$ выражение (2.4), получаем:

$$ d\phi=\frac{L}{r^2}\frac{dr}{\sqrt{2m(E-\frac{L^2}{2mr^2}+\frac{GMm}{r})}} \hspace{3cm}(2.5) $$

Чтобы проинтегрировать полученное выражение, перепишем выражение, стоящее под корнем в скобках, в следующем виде:

$$ E-((\frac{GMm^{3/2}}{\sqrt{2}L})^2 - \frac{GMm}{r} + \frac{L^2}{2mr^2}) + (\frac{GMm^{3/2}}{\sqrt{2}L})^2=$$ $$ =E-(\frac{GMm^{3/2}}{\sqrt{2}L}-\frac{L}{r\sqrt{2mr}})^2 + (\frac{GMm^{3/2}}{\sqrt{2}L})^2=$$ $$ =\frac{L^2}{2m}(\frac{2mE}{L^2}+(\frac{GMm^2}{L^2})^2-(\frac{GMm^2}{L^2}-\frac{1}{r})^2) $$

Введем следующее обозначение:

$$ \frac{GMm^2}{L^2}\equiv\frac{1}{p} $$

Продолжая преобразования, получаем:

$$ \frac{L^2}{2m}(\frac{2mE}{L^2}+(\frac{GMm^2}{L^2})^2-(\frac{GMm^2}{L^2}-\frac{1}{r})^2)=$$ $$\frac{L^2}{2m}(\frac{2mE}{L^2} + \frac{1}{p^2}-(\frac{1}{p}-\frac{1}{r})^2)=$$ $$\frac{L^2}{2m}(\frac{1}{p^2}(1+\frac{2EL^2}{(GM)^2m^3})-(\frac{1}{p}-\frac{1}{r})^2) $$

Введем обозначение:

$$ 1+\frac{2EL^2}{(GM)^2m^3} \equiv e^2 $$

В этом случае преобразуемое выражение принимает следующий вид:

$$ \frac{L^2e^2}{2mp^2}(1-(\frac{p}{e} (\frac{1}{p}-\frac{1}{r}))^2) $$

Введем для удобства следующую переменную:

$$ z=\frac{p}{e} (\frac{1}{p}-\frac{1}{r}) $$

Теперь уравнение (2.5) принимает вид:

$$ d\phi=\frac{p}{er^2}\frac{dr}{\sqrt{1-z^2}}=\frac{dz}{\sqrt{1-z^2}}\hspace{3cm}(2.6) $$

Проинтегрируем полученное выражение:

$$ \phi(r)=\int\frac{dz}{\sqrt{1-z^2}}=\arcsin{z}-\phi_0 $$

Здесь $\phi_0$ - конатснта интегрирования.

Наконец, получаем закон движения:

$$ r(\phi)=\frac{p}{1-e\sin{(\phi+\phi_0)}} $$

Положив константу интегрирования $\phi_0=\frac{3\pi}{2}$ (данное значение соответствует экстремуму функции $r(\phi)$), окончательно получаем:

$$r(\phi)=\frac{p}{1+e\cos{\phi}} \hspace{3cm}(2.7)$$ $$p=\frac{L^2}{GMm^2}$$ $$e=\sqrt{1+\frac{2EL^2}{(GM)^2m^3}}$$

Из курса аналитической геометрии известно, что выражение, полученное для функции $r(\phi)$, описывает кривые второго порядка: эллипс, параболу и гиперболу. Параметры $p$ и $e$ называют, соответственно, фокальным параметром и эксцентриситетом кривой. Фокальный параметр может принимать любое положительное значение, а величина эксцентриситета определяет вид траектории: если $e\in}